Analysis for Single Molecule Localization Microscopy


Analysis for Single Molecule Localization Microscopy 

Fluorescence microscopy is currently the most important tool for visualizing biological structures at the sub?cellular scale. The combination of fluorescence, which enables a high imaging contrast, and the possibility to apply molecular labeling, which allows for a high imagingspecificity, makes it a powerful imaging modality. The use of fluorescence microscopy has risen tremendously, in particular since the introduction of the green fluorescent protein (GFP) in the mid-1990s and the possibility to genetically engineer cells to express these proteins.

It shows the basic layout of a fluorescence microscope. Excitation light of a certain wavelength is reflected via a dichroic beamsplitter and projected onto the specimen via the objective lens of the microscope. The light is absorbed by the fluorescent labels and re-emitted, slightly Stokes-shifted by ?100 nm, at a larger wavelength, typically a few nanoseconds later. The emission light is captured by the objective lens and directed toward the camera via the dichroic beamsplitter.

Related Image Processing Project Titles: