Mapping Method & Determination of Hyperspectral Imagery
The subpixel mapping technique can specify the spatial distribution of different categories at the subpixel scale by converting the abundance map into a higher resolution image, based on the assumption of spatial dependence. Traditional subpixel mapping algorithms only utilize the low-resolution image obtained by the classification image downsampling and do not consider the spectral unmixing error, which is difficult to account for in real applications. In this paper, to improve the accuracy of the subpixel mapping, an adaptive subpixel mapping method based on a maximum a posteriori (MAP) model and a winner-take-all class determination strategy, namely, AMCDSM, is proposed for hyperspectral remote sensing imagery.
In AMCDSM, to better simulate a real remote sensing scene, the low-resolution abundance images are obtained by the spectral unmixing method from the downsampled original image or real low-resolution images. The MAP model is extended by considering the spatial prior models (Laplacian, total variation (TV), and bilateral TV) to obtain the high-resolution subpixel distribution map. To avoid the setting of the regularization parameter, an adaptive parameter selection method is designed to acquire the optimal subpixel mapping results. In addition, in AMCDSM, to take into account the spectral unmixing error in real applications, a winner-take-all strategy is proposed to achieve a better subpixel mapping result. The proposed method was tested on simulated, synthetic, and real hyperspectral images, and the experimental results demonstrate that the AMCDSM algorithm outperforms the traditional subpixel mapping methods and provides a simple and efficient algorithm to regularize the ill-posed subpixel mapping problem.
Related Image Processing Using Matlab Projects Titles:
- Fall Detection in Homes of Older Adults Using the Microsoft Kinect.
- Gabor Feature-Based Collaborative Representation for Hyperspectral Imagery Classification.
- Supervised Variational Model With Statistical Inference and Its Application in Medical Image Segmentation.
- Multiple Feature Learning for Hyperspectral Image Classification.
- Ultrasound Current Source Density Imaging of the Cardiac Activation Wave Using a Clinical Cardiac Catheter.
- Motion Estimation in Cardiac Fluorescence Imaging With Scale-Space Landmarks and Optical Flow: A Comparative Study.
- Semiparametric Statistical Stripmap Synthetic Aperture Autofocusing.
- Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine.
- Impedance Imaging With First-Order TV Regularization.
- Futuristic Greedy Approach to Sparse Unmixing of Hyperspectral Data.
- A Geometric Matched Filter for Hyperspectral Target Detection and Partial Unmixing.
- Dimension Reduction Using Spatial and Spectral Regularized Local Discriminant Embedding for Hyperspectral Image Classification.
- Spatial-Aware Dictionary Learning for Hyperspectral Image Classification.
- Faraday Rotation Retrieval Using SMOS Radiometric Data.
- Model-Based Fusion of Multi- and Hyperspectral Images Using PCA and Wavelets.
- PET Image Reconstruction Using Kernel Method.
- Landmark Detection for Fusion of Fundus and MRI Toward a Patient-Specific Multimodal Eye Model.
- Stereo Matching with Optimal Local Adaptive Radiometric Compensation.
- Graph-Based Supervised Automatic Target Detection.
Subscribe Our Youtube Channel
You can Watch all Subjects Matlab & Simulink latest Innovative Project Results
Our services
We want to support Uncompromise Matlab service for all your Requirements Our Reseachers and Technical team keep update the technology for all subjects ,We assure We Meet out Your Needs.
Our Services
- Matlab Research Paper Help
- Matlab assignment help
- Matlab Project Help
- Matlab Homework Help
- Simulink assignment help
- Simulink Project Help
- Simulink Homework Help
- Matlab Research Paper Help
- NS3 Research Paper Help
- Omnet++ Research Paper Help
Our Benefits
- Customised Matlab Assignments
- Global Assignment Knowledge
- Best Assignment Writers
- Certified Matlab Trainers
- Experienced Matlab Developers
- Over 400k+ Satisfied Students
- Ontime support
- Best Price Guarantee
- Plagiarism Free Work
- Correct Citations
Expert Matlab services just 1-click
Delivery Materials
Unlimited support we offer you
For better understanding purpose we provide following Materials for all Kind of Research & Assignment & Homework service.
- Programs
- Designs
- Simulations
- Results
- Graphs
- Result snapshot
- Video Tutorial
- Instructions Profile
- Sofware Install Guide
- Execution Guidance
- Explanations
- Implement Plan
Matlab Projects
Matlab projects innovators has laid our steps in all dimension related to math works.Our concern support matlab projects for more than 10 years.Many Research scholars are benefited by our matlab projects service.We are trusted institution who supplies matlab projects for many universities and colleges.
Reasons to choose Matlab Projects .org???
Our Service are widely utilized by Research centers.More than 5000+ Projects & Thesis has been provided by us to Students & Research Scholars. All current mathworks software versions are being updated by us.
Our concern has provided the required solution for all the above mention technical problems required by clients with best Customer Support.
- Novel Idea
- Ontime Delivery
- Best Prices
- Unique Work