Application and evaluation on airways extracted from CT
We present a fast and robust atlas-based algorithm for labeling airway trees, using geodesic distances in a geometric tree-space. Possible branch label configurations for an unlabeled airway tree are evaluated using distances to a training set of labeled airway trees. In tree-space, airway tree topology and geometry change continuously, giving a natural automatic handling of anatomical differences and noise. A hierarchical approach makes the algorithm efficient, assigning labels from the trachea and downwards. Only the airway centerline tree is used, which is relatively unaffected by pathology. The algorithm is evaluated on 80 segmented airway trees from 40 subjects at two time points, labeled by 3medical experts each, testing accuracy, reproducibility and robustness in patients with Chronic Obstructive Pulmonary Disease (COPD).
The accuracy of the algorithm is statistically similar to that of the experts and not significantly correlated with COPD severity. The reproducibility of the algorithm is significantly better than that of the experts, and negatively correlated with COPD severity. Evaluation of the algorithm on a longitudinal set of 8724 trees from a lung cancer screening trial shows that the algorithm can be used in large scale studies with high reproducibility, and that the negative correlation of reproducibility with COPD severity can be explained by missing branches, for instance due to segmentation problems in COPD patients. We conclude that the algorithm is robust to COPD severity given equally complete airway trees, and comparable in performance to that of experts in pulmonary medicine, emphasizing the suitability of the labeling algorithm for clinical use.
Related Matlab Project Titles:
- Fast and Robust Design of Time-Optimal k-Space Trajectories in MRI.
- Fast X-Ray CT Image Reconstruction Using a Linearized Augmented Lagrangian Method With Ordered Subsets.
- Spinal Navigation and Imaging: History, Trends and Future.
- A Pipeline for the Generation of Realistic 3D Synthetic Echocardiographic Sequences: Methodology and Open-access Database.
- Automated 3-D Retinal Layer Segmentation of Macular Optical Coherence Tomography Images With Serous Pigment Epithelial Detachments.
- Fast Parallel MR Image Reconstruction via B1-Based, Adaptive Restart, Iterative Soft Thresholding Algorithms (BARISTA).
- Ultrasound Shear Wave Elasticity Imaging Quantifies Coronary Perfusion Pressure Effect on Cardiac Compliance.
- The Evaluation of Data Completeness and Image Quality in Multiplexing Multi-Pinhole SPECT.
- Vertebroplasty Performance on Simulator for 19 Surgeons Using Hierarchical Task Analysis.
- Multi-Dimensional Flow-Preserving Compressed Sensing (MuFloCoS) for Time-Resolved Velocity-Encoded Phase Contrast MRI.
- Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3-D X-ray CT.
- Including Signal Intensity Increases the Performance of Blind Source Separation on Brain Imaging Data.
- A Model of Population and Subject (MOPS) Intensities with Application to Multiple Sclerosis Lesion Segmentation.
- Multi-Target Tracking with Time-Varying Clutter Rate and Detection Profile: Application to Time-lapse Cell Microscopy Sequences.
- Transcranial Assessment and Visualization of Acoustic Cavitation: Modeling and Experimental Validation.
- Microstructural characterization of the pia-arachnoid complex using optical coherence tomography.
- Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets.
- Analysis of Laser Speckle Contrast Images Variability Using a Novel Empirical Mode Decomposition: Comparison of Results With Laser Doppler Flowmetry Signals Variability
- Axially Elongated Field-Free Point Data Acquisition in Magnetic Particle Imaging.
Subscribe Our Youtube Channel
You can Watch all Subjects Matlab & Simulink latest Innovative Project Results
Our services
We want to support Uncompromise Matlab service for all your Requirements Our Reseachers and Technical team keep update the technology for all subjects ,We assure We Meet out Your Needs.
Our Services
- Matlab Research Paper Help
- Matlab assignment help
- Matlab Project Help
- Matlab Homework Help
- Simulink assignment help
- Simulink Project Help
- Simulink Homework Help
- Matlab Research Paper Help
- NS3 Research Paper Help
- Omnet++ Research Paper Help
Our Benefits
- Customised Matlab Assignments
- Global Assignment Knowledge
- Best Assignment Writers
- Certified Matlab Trainers
- Experienced Matlab Developers
- Over 400k+ Satisfied Students
- Ontime support
- Best Price Guarantee
- Plagiarism Free Work
- Correct Citations
Expert Matlab services just 1-click
Delivery Materials
Unlimited support we offer you
For better understanding purpose we provide following Materials for all Kind of Research & Assignment & Homework service.
- Programs
- Designs
- Simulations
- Results
- Graphs
- Result snapshot
- Video Tutorial
- Instructions Profile
- Sofware Install Guide
- Execution Guidance
- Explanations
- Implement Plan
Matlab Projects
Matlab projects innovators has laid our steps in all dimension related to math works.Our concern support matlab projects for more than 10 years.Many Research scholars are benefited by our matlab projects service.We are trusted institution who supplies matlab projects for many universities and colleges.
Reasons to choose Matlab Projects .org???
Our Service are widely utilized by Research centers.More than 5000+ Projects & Thesis has been provided by us to Students & Research Scholars. All current mathworks software versions are being updated by us.
Our concern has provided the required solution for all the above mention technical problems required by clients with best Customer Support.
- Novel Idea
- Ontime Delivery
- Best Prices
- Unique Work