Hyperspectral Imagery Using Multilayer NMF
Hyperspectral images contain mixed pixels due to low spatial resolution of hyperspectral sensors. Spectral unmixing problem refers to decomposing mixed pixels into a set of endmembers and abundance fractions. Due to nonnegativity constraint on abundance fractions, nonnegative matrix factorization (NMF) methods have been widely used for solving spectral unmixing problem. In this letter we proposed using multilayer NMF (MLNMF) for the purpose of hyperspectral unmixing. In this approach, spectral signature matrix can be modeled as a product of sparse matrices. In fact MLNMF decomposes the observation matrix iteratively in a number of layers.
In each layer, we applied sparseness constraint on spectral signature matrix as well as on abundance fractions matrix. In this way signatures matrix can be sparsely decomposed despite the fact that it is not generally a sparse matrix. The proposed algorithm is applied on synthetic and real data sets. Synthetic data is generated based on endmembers from U.S. Geological Survey spectral library. AVIRIS Cuprite data set has been used as a real data set for evaluation of proposed method. Results of experiments are quantified based on SAD and AAD measures. Results in comparison with previously proposed methods show that the multilayer approach can unmix data more effectively.
Related Image Processing Projects Titles:
- A New Sparsity-Based Band Selection Method for Target Detection of Hyperspectral Image.
- An Adaptive Pixon Extraction Technique for Multispectral/Hyperspectral Image Classification.
- COMMIT: Convex Optimization Modeling for Microstructure Informed Tractography.
- A Novel Range Grating Lobe Suppression Method Based on the Stepped-Frequency SAR Image.
- Sparse Unmixing of Hyperspectral Data Using Spectral A Priori Information.
- A Novel Feature Selection Approach Based on FODPSO and SVM.
- A Pansharpening Method Based on the Sparse Representation of Injected Details.
- Block Adjustment for Satellite Imagery Based on the Strip Constraint.
- Bayesian Blind Separation and Deconvolution of Dynamic Image Sequences Using Sparsity Priors.
- Local-Manifold-Learning-Based Graph Construction for Semisupervised Hyperspectral Image Classification.
- Learning Understandable Neural Networks With Nonnegative Weight Constraints.
- Two-Tier Tissue Decomposition for Histopathological Image Representation and Classification.
- Feature Matching With an Adaptive Optical Sensor in a Ground Target Tracking System.
- Classification of Hyperspectral Image Based on Sparse Representation in Tangent Space
Subscribe Our Youtube Channel
You can Watch all Subjects Matlab & Simulink latest Innovative Project Results
Our services
We want to support Uncompromise Matlab service for all your Requirements Our Reseachers and Technical team keep update the technology for all subjects ,We assure We Meet out Your Needs.
Our Services
- Matlab Research Paper Help
- Matlab assignment help
- Matlab Project Help
- Matlab Homework Help
- Simulink assignment help
- Simulink Project Help
- Simulink Homework Help
- Matlab Research Paper Help
- NS3 Research Paper Help
- Omnet++ Research Paper Help
Our Benefits
- Customised Matlab Assignments
- Global Assignment Knowledge
- Best Assignment Writers
- Certified Matlab Trainers
- Experienced Matlab Developers
- Over 400k+ Satisfied Students
- Ontime support
- Best Price Guarantee
- Plagiarism Free Work
- Correct Citations
Expert Matlab services just 1-click
Delivery Materials
Unlimited support we offer you
For better understanding purpose we provide following Materials for all Kind of Research & Assignment & Homework service.
- Programs
- Designs
- Simulations
- Results
- Graphs
- Result snapshot
- Video Tutorial
- Instructions Profile
- Sofware Install Guide
- Execution Guidance
- Explanations
- Implement Plan
Matlab Projects
Matlab projects innovators has laid our steps in all dimension related to math works.Our concern support matlab projects for more than 10 years.Many Research scholars are benefited by our matlab projects service.We are trusted institution who supplies matlab projects for many universities and colleges.
Reasons to choose Matlab Projects .org???
Our Service are widely utilized by Research centers.More than 5000+ Projects & Thesis has been provided by us to Students & Research Scholars. All current mathworks software versions are being updated by us.
Our concern has provided the required solution for all the above mention technical problems required by clients with best Customer Support.
- Novel Idea
- Ontime Delivery
- Best Prices
- Unique Work