Sparse Unmixing of Hyperspectral Data
Given a spectral library, sparse unmixing aims at finding the optimal subset of endmembers from it to model each pixel in the hyperspectral scene. However, sparse unmixing still remains a challenging task due to the usually high mutual coherence of the spectral library. In this paper, we exploit the spectral a priori information in the hyperspectral image to alleviate this difficulty. It assumes that some materials in the spectral library are known to exist in the scene. Such information can be obtained via field investigation or hyperspectral data analysis.
Then, we propose a novel model to incorporate the spectral a priori information into sparse unmixing. Based on the alternating direction method of multipliers, we present a new algorithm, which is termed sparse unmixing using spectral a priori information (SUnSPI), to solve the model. Experimental results on both synthetic and real data demonstrate that the spectral a priori information is beneficial to sparse unmixing and that SUnSPI can exploit this information effectively to improve the abundance estimation.
Related Image Processing Projects Titles:
- A Novel Feature Selection Approach Based on FODPSO and SVM.
- A Pansharpening Method Based on the Sparse Representation of Injected Details.
- Block Adjustment for Satellite Imagery Based on the Strip Constraint.
- Bayesian Blind Separation and Deconvolution of Dynamic Image Sequences Using Sparsity Priors.
- Local-Manifold-Learning-Based Graph Construction for Semisupervised Hyperspectral Image Classification.
- Learning Understandable Neural Networks With Nonnegative Weight Constraints.
- Two-Tier Tissue Decomposition for Histopathological Image Representation and Classification.
- Feature Matching With an Adaptive Optical Sensor in a Ground Target Tracking System.
- Classification of Hyperspectral Image Based on Sparse Representation in Tangent Space.
- Spectral Unmixing of Hyperspectral Imagery Using Multilayer NMF.
- A New Sparsity-Based Band Selection Method for Target Detection of Hyperspectral Image.
- An Adaptive Pixon Extraction Technique for Multispectral/Hyperspectral Image Classification.
- COMMIT: Convex Optimization Modeling for Microstructure Informed Tractography.
- A Novel Range Grating Lobe Suppression Method Based on the Stepped-Frequency SAR Image.
Subscribe Our Youtube Channel
You can Watch all Subjects Matlab & Simulink latest Innovative Project Results
Our services
We want to support Uncompromise Matlab service for all your Requirements Our Reseachers and Technical team keep update the technology for all subjects ,We assure We Meet out Your Needs.
Our Services
- Matlab Research Paper Help
- Matlab assignment help
- Matlab Project Help
- Matlab Homework Help
- Simulink assignment help
- Simulink Project Help
- Simulink Homework Help
- Matlab Research Paper Help
- NS3 Research Paper Help
- Omnet++ Research Paper Help
Our Benefits
- Customised Matlab Assignments
- Global Assignment Knowledge
- Best Assignment Writers
- Certified Matlab Trainers
- Experienced Matlab Developers
- Over 400k+ Satisfied Students
- Ontime support
- Best Price Guarantee
- Plagiarism Free Work
- Correct Citations
Expert Matlab services just 1-click
Delivery Materials
Unlimited support we offer you
For better understanding purpose we provide following Materials for all Kind of Research & Assignment & Homework service.
- Programs
- Designs
- Simulations
- Results
- Graphs
- Result snapshot
- Video Tutorial
- Instructions Profile
- Sofware Install Guide
- Execution Guidance
- Explanations
- Implement Plan
Matlab Projects
Matlab projects innovators has laid our steps in all dimension related to math works.Our concern support matlab projects for more than 10 years.Many Research scholars are benefited by our matlab projects service.We are trusted institution who supplies matlab projects for many universities and colleges.
Reasons to choose Matlab Projects .org???
Our Service are widely utilized by Research centers.More than 5000+ Projects & Thesis has been provided by us to Students & Research Scholars. All current mathworks software versions are being updated by us.
Our concern has provided the required solution for all the above mention technical problems required by clients with best Customer Support.
- Novel Idea
- Ontime Delivery
- Best Prices
- Unique Work