Random Walker Classification of Hyperspectral Images
This paper introduces a novel spectral-spatial classification method for hyperspectral images based on extended random walkers (ERWs), which consists of two main steps. First, a widely used pixelwise classifier, i.e., the support vector machine (SVM), is adopted to obtain classification probability maps for a hyperspectral image, which reflect the probabilities that each hyperspectral pixel belongs to different classes. Then, the obtained pixelwise probability maps are optimized with the ERW algorithm that encodes the spatial information of the hyperspectral image in a weighted graph.
Specifically, the class of a test pixel is determined based on three factors, i.e., the pixelwise statistics information learned by a SVM classifier, the spatial correlation among adjacent pixels modeled by the weights of graph edges, and the connectedness between the training and test samples modeled by random walkers. Since the three factors are all well considered in the ERW-based global optimization framework, the proposed method shows very good classification performances for three widely used real hyperspectral data sets even when the number of training samples is relatively small.
Related Matlab Project Titles:
- Fusion of MS and PAN Images Preserving Spectral Quality.
- Paddy-Rice Monitoring Using TanDEM-X.
- An Antinoise Method for Hyperspectral Unmixing.
- An Improved Nonlocal Sparse Unmixing Algorithm for Hyperspectral Imagery.
- A Three-Component Fisher-Based Feature Weighting Method for Supervised PolSAR Image Classification.
- An Abundance Characteristic-Based Independent Component Analysis for Hyperspectral Unmixing.
- Bias Reduction for Low-Statistics PET: Maximum Likelihood Reconstruction With a Modified Poisson Distribution.
- Geometry-Information-Aided Efficient Motion Parameter Estimation for Moving-Target Imaging and Location.
- Discriminative Clustering and Feature Selection for Brain MRI Segmentation.
Subscribe Our Youtube Channel
You can Watch all Subjects Matlab & Simulink latest Innovative Project Results
Our services
We want to support Uncompromise Matlab service for all your Requirements Our Reseachers and Technical team keep update the technology for all subjects ,We assure We Meet out Your Needs.
Our Services
- Matlab Research Paper Help
- Matlab assignment help
- Matlab Project Help
- Matlab Homework Help
- Simulink assignment help
- Simulink Project Help
- Simulink Homework Help
- Matlab Research Paper Help
- NS3 Research Paper Help
- Omnet++ Research Paper Help
Our Benefits
- Customised Matlab Assignments
- Global Assignment Knowledge
- Best Assignment Writers
- Certified Matlab Trainers
- Experienced Matlab Developers
- Over 400k+ Satisfied Students
- Ontime support
- Best Price Guarantee
- Plagiarism Free Work
- Correct Citations
Expert Matlab services just 1-click
Delivery Materials
Unlimited support we offer you
For better understanding purpose we provide following Materials for all Kind of Research & Assignment & Homework service.
- Programs
- Designs
- Simulations
- Results
- Graphs
- Result snapshot
- Video Tutorial
- Instructions Profile
- Sofware Install Guide
- Execution Guidance
- Explanations
- Implement Plan
Matlab Projects
Matlab projects innovators has laid our steps in all dimension related to math works.Our concern support matlab projects for more than 10 years.Many Research scholars are benefited by our matlab projects service.We are trusted institution who supplies matlab projects for many universities and colleges.
Reasons to choose Matlab Projects .org???
Our Service are widely utilized by Research centers.More than 5000+ Projects & Thesis has been provided by us to Students & Research Scholars. All current mathworks software versions are being updated by us.
Our concern has provided the required solution for all the above mention technical problems required by clients with best Customer Support.
- Novel Idea
- Ontime Delivery
- Best Prices
- Unique Work