Predictive Torque Scheme for InverterFed Motor Drives


Predictive Torque Scheme for InverterFed Motor Drives 

The four-switch three-phase (B4) inverter, having a lower number of switches, was first presented for the possibility of reducing the inverter cost, and it became very attractive as it can be utilized in fault-tolerant control to solve the open/short-circuit fault of the six-switch three-phase (B6) inverter. However, the balance among the phase currents collapses due to the fluctuation of the two dc-link capacitor voltages; therefore, its application is limited. This paper proposes a predictive torque control (PTC) scheme for the B4 inverter-fed induction motor (IM) with the dc-link voltage offset suppression.

The voltage vectors of the B4 inverter under the fluctuation of the two dc-link capacitor voltages are derived for precise prediction and control of the torque and stator flux. The three-phase currents are forced to stay balance by directly controlling the stator flux. The voltage offset of the two dc-link capacitors is modeled and controlled in the predictive point of view. A lot of simulation and experimental results are presented to validate the proposed control scheme

Related Communication System Project Titles: